ln b = x
loge b = x
How to find the natural logarithm ln b = x?
ln b is logarithm of b to base e.
x is the exponent to which you need to raise base e to get b.
Euler’s number e ≈ 2.71828
ln b = x ⇔ ex = b
Symbol: ln b = log e b = log e (b) = log (b, e)
Examples:
ln 1 = x ⇔ ex = 1 ⇔ 2.72x = 1 ⇒ x = 0
ln 2 = x ⇔ ex = 2 ⇔ 2.72x = 2 ⇒ x = 0.7
ln 5 = x ⇔ ex = 5 ⇔ 2.72x = 5 ⇒ x = 1.6
ln 10 = x ⇔ ex = 10 ⇔ 2.72x = 10 ⇒ x = 2.3